由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
基于原子间位置的相关性的机器学习框架首先是对系统中每个原子附近其他原子密度的离散描述。对称考虑因素支持使用球形谐波扩大该密度的角度依赖性,但是尚无明确的理由来选择一种径向基础而不是另一种径向基础。在这里,我们调查了laplacian特征值问题在感兴趣原子周围的球体中的解决方案。我们表明,这在球体内生成了给定尺寸的最平稳依据,并且拉普拉斯本征态的张量产品也为扩展适当的超晶体内原子密度的任何高阶相关性提供了最平稳的可能基础。我们考虑了给定数据集的基础质量的几个无监督的指标,并表明拉普拉斯特征态的基础的性能比某些广泛使用的基础集要好得多,并且与数据驱动的基础具有竞争力,该基础基础具有数值优化每个度量的基础。在监督的机器学习测试中,我们发现拉普拉斯特征状态的最佳功能平滑度导致可比或更好的性能,而不是从相似大小的数据驱动的基础上获得的,该基础已优化,以描述用于描述原子密度相关的相关性特定数据集。我们得出的结论是,基本函数的平滑度是成功的原子密度表示的关键,迄今为止,迄今为止却在很大程度上被忽略了。
translated by 谷歌翻译
分子或材料的电子密度最近作为机器学习模型的目标数量受到了主要关注。一种自然选择,用于构建可传递可转移和线性缩放预测的模型是使用类似于通常用于密度拟合近似值的常规使用的原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以直接在优化且高度稀疏的特征空间中最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的限制,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度函数计算,而误差仅为0.1 MEV/ATOM。最后,我们测试了高度异构QM9基准数据集的方法,这表明训练数据的一小部分足以在化学精度内得出地面总能量。
translated by 谷歌翻译
机器学习电位通常是在基态的,未脑的能量表面上训练的,该能量表面仅取决于原子位置而不取决于模拟温度。这无视热激发电子的影响,这在金属中很重要,对于描述温暖的物质至关重要。这些效果的准确物理描述要求该核在温度依赖性电子自由能上移动。我们提出了一种方法,以在任意电子温度下使用地面计算中专门训练数据,避免需要训练温度依赖的电位,并在金属液体氢上基准在任意电子温度下获得该自由能的机器学习预测。天然气巨头和棕色矮人的核心。这项工作证明了混合方案的优势,这些方案使用物理考虑来结合机器学习预测,为开发类似方法的开发提供了蓝图,这些方法通过消除物理和数据驱动方法之间的屏障来扩展原子建模的覆盖范围。
translated by 谷歌翻译
图神经网络(GNN)是机器学习中非常流行的方法,并且非常成功地应用于分子和材料的性质。众所周知,一阶GNN是不完整的,即存在不同的图形,但在通过GNN的镜头看到时似乎相同。因此,更复杂的方案旨在提高其分辨能力。但是,在分子(以及更一般的点云)上的应用,为问题添加了几何维度。构造分子图表表示原子的最直接和普遍的方法将原子视为图中的顶点,并在所选截止中的每对原子之间绘制一个键。键可以用原子之间的距离进行装饰,所得的“距离图NN”(DGNN)在经验上已证明了出色的分辨能力,并广泛用于化学ML,所有已知的不可区分的图都在完全连接的极限中解析。在这里,我们表明,即使对于由3D原子云引起的完全连接图的受限情况也不完整。我们构造了一对不同的点云对产生图形,对于任何截止半径,基于一阶Weisfeiler-Lehman测试都是等效的。这类退化的结构包括化学上可见的构型,为某些完善的GNN架构的原子学机器学习设定了最终的限制。在原子环境描述中明确使用角度或方向信息的模型可以解决这些变性。
translated by 谷歌翻译
对称考虑对于用于提供原子配置的有效数学表示的主要框架的核心,然后在机器学习模型中用于预测与每个结构相关的特性。在大多数情况下,模型依赖于以原子为中心的环境的描述,并且适合于学习可以分解成原子贡献的原子特性或全局观察到。然而,许多与量子机械计算相关的数量 - 最值得注意的是,以原子轨道基础写入时的单粒子哈密顿矩阵 - 与单个中心无关,但结构中有两个(或更多个)原子。我们讨论一系列结构描述符,以概括为N中心案例的非常成功的原子居中密度相关特征,特别是如何应用这种结构,以有效地学习(有效)单粒子汉密尔顿人的矩阵元素以原子为中心的轨道基础。这些N中心的特点是完全的,不仅在转换和旋转方面,而且还就与原子相关的指数的排列而言 - 并且适合于构建新类的对称适应的机器学习模型分子和材料的性质。
translated by 谷歌翻译
几乎每个机器学习算法的输入瞄准原子秤上的物质属性涉及笛卡尔原子坐标列表的转换为更称对称表示。许多最流行的表示可以被视为原子密度的对称相关性的扩展,并且主要在于基础的选择。相当大的努力一直致力于优化基础集,通常由关于回归目标行为的启发式考虑因素驱动。在这里,我们采取了不同的无监督的观点,旨在确定以最紧凑的方式进行编码的基础,可能是与手头数据集相关的结构信息。对于每个训练数据集和基础函数数,可以确定在这种意义上最佳的独特基础,并且可以通过用样条近似于近似地基于原始基础来计算。我们证明,这种结构产生了准确和计算效率的表示,特别是在构建对应于高于高机标相关性的表示时。我们提出了涉及分子和凝聚相机器学习模型的示例。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译
Background: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps, and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. Method: A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing Indirect ImmunoFluorescence (IIF) raw data. This study describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is far from the conventional neural network approach, but it is equivalent to their quantitative and qualitative performance, and it is also solid to adversative noise. The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets. Results: This work demonstrates the robustness of the method against the variability of parameters, such as image size, mode, and signal-to-noise ratio. We validated the method on two datasets (Neuroblastoma and NucleusSegData) using images annotated by independent medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a functional to a structural point of view, guarantees the achievement of optimized and functionally correct results. The excellent performance of our deterministic method (NeuronalAlg) to segment cells and nuclei from fluorescence images was measured with quantitative indicators and compared with those achieved by three published ML approaches.
translated by 谷歌翻译
Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.
translated by 谷歌翻译